FALL 2024: MATH 790 HOMEWORK

Homework problems from Linear Algebra Done Right will be labelled LADR.

HW 1. Let V be a vector space over the field F'. Note that we are not assuming that V' is finite dimensional.

(i) Prove the following version of the exchange property. Let {u1,...,un} C Vandset U := (uy, ..., uy,).
Suppose v1,...,v, € U are linearly independent. Prove that m < n.
(ii) Give a detailed prove using Zorn’s lemma to show that any vector space has a basis.
(iii) Assume that F' = C. Prove that V is also a vector space over R, and assuming V' is finite dimensional
over C, find the dimension of V' as a vector space over R in terms of the dimension of V' over C.
(iv) Let W C V be a subspace. Use Zorn’s lemma to prove there exists a subspace U C V maximal with
respect to the property that W NU = 0.

HW 2. Let V be a vector space over the field F.

(i) Suppose T : V — W is a linear transformation between finite dimensional vectors spaces. Assume
a1, ag are bases for V' and (1, B2 are bases for W. Use the crucial formula from the lecture of August
28 to write a formula relating the matrices [T} and [T]52.

(ii) Prove that if the dimension of V' equals n, with n > 0, then there cannot exist a chain of subspaces
(0) S Wy--- C W, C V. Conclude that if U; C Uy C Us C -+ is an ascending chain of subspaces of
V', then there exists ng > 1 such that Us = U,,, for all s > ny.

(iii) Suppose F is infinite. Prove that V is not the union of finitely many proper subspaces of V.

HW 3. This homework uses the notation from the second day of class, as it appears in the Daily Update
from August 28. Let A be an n x n matrix with coefficients in the field F.

(i) Let T : V. — W be a linear transformation and set A = [T]2. For v € V let [v], denote the n x 1
ai

column vector in F™ obtained as follows: If v = ajv1 + -+ + avy,, then [v], = [ © |. The vector

[T(v)]p in W is defined similarly. Prove that [T'(v)]g = A - [v]q.

(ii) Show that if B is obtained from A by interchanging two rows, then |B| = —|A].

(iii) Let E be an elementary matrix, i.e., an n X n matrix obtained from I,, by applying an elementary
row operation. Prove that E'A is obtained from A by apply the same elementary row operation to
A.

(iii) Prove that if A is any matrix, then there is a sequence of elementary row operations that put A into
reduced row echelon form.

(iv) Show that if E is an elementary matrix corresponding to an elementary row operation of a given
type, then E' is an elementary matrix corresponding to a row operation of the same type.

HW 4. For problems these you may use any of the properties of the determinant discussed in class.
(i) For an n x n matrix A, verify the Laplace expansion along the kth row: |A| = E;"Zl(—l)j+kakj|Akj|.
(ii) Let A be an n X n invertible matrix such that every entry is +1. Prove that |A| is an integer divisible
by 271
(iii) Suppose that A and B are (2k + 1) x (2k + 1) matrices over R such that AB = —BA. Prove that A4
and B cannot both be invertible.

HW 5. Let V be a vector space of dimension n over the field F'.

(i) Prove that the vector spaces L(V, V) and M,,(F') are isomorphic.
(ii) Using the Cayley-Hamilton theorem for matrices, prove that x7(T) =0, for T € L(V,V).
(iii) For f(x) € Flx], with s the degree of f(x), prove that |zl — C(f(x))| = f(z), where C(f(x)) is the
companion matrix of f(x). In other words xc(f())(®) = f(x).
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HW 6. In the first two problems below, V is a vector space of dimension n and B := {vq,...,v,} CVisa
basis for V.
ai
1. For v € V, write v = ajv; + - - - + anv,. Define [v]p := | ! |, a column vector in F™".
Qnp
(i) For a, 8 € F and v,w € V, show that [av + Sw]p = av]g + Blw]s.
(ii) For T € £L(V,V) and v € V, show that [T'(v)]p = [T]5 - [v]5.

2. Suppose A € Fand T € L(V, V). Using the corresponding result for matrices, prove that A is an eigenvalue
of T' if and only if x7(A) = 0.

3. Prove a uniqueness statement for the division algorithm in F'[z], i.e., prove that if f(x), g(x), h(z),r(x), ho(z), ro(x)
are in F[z] and
9(x) = f(@)h(x) +r(x) = f(2)ho(x) + r0(),
where r(x), ro(z) are either zero or have degree less than the degree of f(x), then h(z) = ho(z) and
r(z) =ro(z).
HW 7. 1. Let W C R be a plane through the origin and L C R3 a line through the origin, with L ¢ W.
Prove that R = W @ L.

2. Suppose V. = Wj 4+ Ws, for proper non-zero subspaces Wi, Wy C V. Prove there exists a subspace
Us C W5 such that V = W; @ Us.

3. Suppose D is an n X n diagonal matrix with diagonal entires Aq,...,\,. Prove that Ay,...,\, are the
only eigenvalues of D.

HW 8. 1. Suppose B’ = {v{,...,v,,} is a basis for V and P = (p;;) an n x n matrix over F. Consider
B = {vy,...,v,}, where each v; = p;1v] + - -+ + pinvl,. Show that B is a basis for V if and only if P is an
invertible matrix.

2. Transcribe the main theorem concerning diagonalizability of linear transformations presented at the end
of the lecture on September 13 to a statement about diagonalizability for matrices, and then use the linear
transformation form of the theorem to prove the matrix form of the theorem.

HW 9. 1. Suppose B is a basis for the vector space V and B = B; U---U B, is a partition of B. Set
W, := Span(B;), for each 1 <i <r. Show that V = W;®---®W,.. Note: V need not be finite dimensional,
though you can assume this initially, to get a feeling for how this works.

ot

2. Let T': F™™ — F™ be a linear transformation, suppose E C F™ is the standard basis, and write A = [T
Suppose P is an invertible matrix such that P~*AP = D, where D is a diagonal matrix. Let C1,...,C, be
the columns of P, and set B := {C1,...,C,}. Prove that B is a basis for F™ and [T]|8 = D.

3. Let F be a field and T4 : 2 — F? be the linear transformation whose matrix with respect to the standard

basis is A = (1) 01> . Determine if T4 is diagonalizable over the fields: (a) F =R, (b) F =C, (c) F = Za,
and (d) F = Zs.

4. Let T : R? — R? be the linear transformation whose matrix with respect to the standard basis is

B = ((1) :g) Show that Ts is diagonalizable. Find an invertible 2 x 2 matrix P such that P~'BP has

the eigenvalues of B down its diagonal.
Henceforth, whenever we say that V' is an inner product space, we assume that F' = C or R.

HW 10. 1. Let V denote the vector space of complex polynomials having degree less than or equal to n.
For f,g € V, set (f(x),g(x)) := f_ll f(@)g(x) dx. Show that this defines an inner product on V.

2. Suppose V is an inner product space Show:
(i) |Jv|| = 0 if and only if v = 0.
(ii) [|Mv]| = |Al - ||v]|, for all v € V and XA € F. Here for the complex number A, || := va? + b2, if
A =a+ bi. Note if A € R, |A| is just the absolute value of .
2



(iti) f O£ v €V, and A = ﬁ show that ||Av|| = 1.

3. Suppose V is an inner product space defined over R. Show:
(i) (u+wv,u—v) = |ul|> = |]v|?, for all u,v € V.
(ii) If u,v € V have the same length, then u + v is orthogonal to u — v.
(iii) The two diagonals of any rhombus are perpendicular to each other.

HW 11 1 Let V be the vector space of real polynomials of degree less than or equal to two. Define
(f(x) fo . Find an orthonormal basis for V.

2. Let W be a subspace of the finite dimensional inner product space V. Show that V =W @ W+. Hence
the name orthogonal complement for W+, Hint: Start with an orthogonal basis for W and extend it to an
orthogonal basis for V. Thus, every vector v € V can we written uniquely as v = w + w’, with w € W and
w’ € W+, The vector w is called the orthogonal projection of v onto W.

-4 2 =2
HW 12. 1. Let C=| 2 -7 4 |. Find an orthogonal matrix Q such that Q'CQ is diagonal. Now,
-2 4 -7

Let T¢ : R? — R? be the linear transformation whose matrix with respect to the standard basis of R? is C.
Find an orthonormal basis for R? consisting of eigenvectors for 7.

2. Find a 2 x 2 matrix over R that is diagonalizable, but not orthogonally diagonalizable.
HW 13. Let V be a finite dimensional inner product space over C.

1. For T € L(V,V), using the definition of T* from class, prove a version of the first spectral theorem over
C for T, using the corresponding result for matrices.

2. For T, S € L(V,V), use the definition of T* from class to prove the following properties:
(i) (S+T)*=S5*"+T*.
(ii) ( T)* =T*S*.
(i) A\T)* )\T*
(iv) (T*)" =T.
(v) If T is 1nvertible, (T=1)* = (T%)~1

HW 14. Give an example of a matrix A € My(C) that is not self-adjoint, but A is normal, and its entries
are not in R. Then show that, for you particular choice of A, ||Av|| = ||A*v]], for all v € C2.

HW 15. Consider the matrices

0 1 0 0
-1 0 0 0
A= o 0 0 2}|°
0 0 -2 0
and
0 1 0 0
-1 0 0 O
B = 0O 0 0 1
0 0 -1 0

Show that these are normal matrices. Then show that when A acts on R* by multiplication, there are
four invariant subspaces, whereas when B acts on R* by multiplication, there are infinitely many invariant
subspaces. The difference here lies in the difference between p4(x) and pp(z). Calculate these polynomials.

HW 16. 1. Let A be an m xn matrix over R or C. Prove that: (a) A*A and AA* have the same eigenvalues,
counted with multiplicity and (b) A*A and A have the same rank.

Lo 0 00 -5
2. Find the singular value decomposition for the following matrices: (a) A = (321 (2}25) ;(b)B=(0 0 0 0
110 0
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HW 17. Let Fx] denote the ring of polynomials with coefficients in the field F.

(i) Let p(z) € F[z] be a non-constant irreducible polynomial. Prove that for any non-constant f(x) in
F[z], the GCD of p(x), f(z) is either p(z) or 1.
(ii) Show that if p(z) is irreducible over F' and p(x) divides f(x) - g(x), then p(x) divides f(x) or p(z)
divides g(z). (Hint: Use (i) and Bezout’s Principle.)
(ili) Prove that if pi(z)---pr(z) = q1(x) - - - ¢s(x), and each p;(x), ¢;(z) is monic and irreducible over F,
then r = s, and after re-indexing, ¢;(z) = -p;(z). In other words, the factorization property for
polynomials in F[z] is in fact a unique factorization property.

HW 18. 1. Consider f(z) = z*+ 23+ 2+ 1 and 2* + 2z in Zs[z]. Use the Euclidean algorithm to find the
GCD of f(x) and g(x), then write this GCD as a(z)f(x) + b(x)g(z), for some a(z),b(z) € Za[x].

1 10
2. Consider the matrix [0 1 1] as an element of My(R) and T : R* — R? given by T'(v) = Av. Find a
1 01

basis B C R? such that the matrix of T’ with respect to B is block diagonal, with one block a 2 x 2 companion
matrix and the other block a 1 x 1 matrix.

3. Suppose A is a 3 x 3 matrix over R whose minimal polynomial equals 3. Show there is an invertible
0 00
matrix P such that P~1AP =1 0 0. Hint: What form must pa ,(x) take, for v € R3.
010
HW 19. 1. Let T : R? — R3 be the linear transformation whose matrix with respect to the standard basis
2 -2 3
isA=| 1 0 2
-1 2 0
0
(i) Forv= [ 0], show that (T,v) = R3.
1

(i) For w = (T? + I)(v), find pr . (x) and determine (T, w),

2. Suppose T € L(V,V) and there are non non-trivial T-invariant subspaces of V. Prove V is a T-cyclic
vector space.

3. Assume T : R? — R3 and (T,v) = R?, for some v € R3. Let N be the number of T-cyclic subspaces.
Show that N = 2,4, or 6.

HW 20. 1. Let A € M3(R). Show that pa(x) cannot be an irreducible polynomial of degree two.

2. Let E = {e1,ea,e3} C R3 be the standard basis and suppose T : R® — R3 be such that [T]E =
-1 3 =2
-1 3 —4
-1 1 -2
(1) Find pre,(x), for each ey, ea, e3.
(ii) Compute pr(x).
(iii) Find a maximal vector for R with respect to 7.

2 0 0 O

3. Do the same as in 3, for the matrix 0 0 -1
’ -1 1 0 -1

0O 0 1 -1

HW 21. 1. Use the invariant factor form of the RCF theorem to prove the elementary divisor form of the
RCF theorem, as stated in the lecture of October 21.

2. Prove a matrix version of the elementary divisor form of the RCF theorem.
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HW 22. For the two matrices given in HW 20, find their rational canonical forms and the corresponding
change of basis matrices.

HW 23. 1. For p > 1, find p distinct pth roots of A = <? é)

2. Find the solution to the system of first order linear differential equations given by the vector equation
X'(t) = A - X(t), with initial condition X(0) = (i) Here X(t) = (;:1 Eg)

2
HW 24. Prove the third isomorphism theorem: Let U, W be subspaces of the vector space V. Prove that
(U +W)/W is isomorphic to U/(U N W). Hint: Find a well-defined surjective linear transformation from
U — (U+ W)/W and then apply the First Isomorphism Theorem.

2. Let V and U be vector spaces and W C V a subspace. Set K := {f € L(V,U) | W C kerne(f)}. Show
that K is a subspace of L(V,U) and L(V,U)/K = L(V/W,U).

HW 25. 1. Given vector spaces V, W, suppose (P, f) is a tensor product of V and W. Suppose a: P — P;
is an isomorphism of vector spaces. Set fi := « o f. Show that (Py, f1) is a tensor product of V' and W.

2. Let L, M be vector spaces over F. Suppose that T : L — M and S : M — L are linear transformations
sch that ST is the identity on L and T'S is the identity on M. Prove that T is an isomorphism with inverse
S.

3. For vector spaces V, W1, Wy over F prove that V @ (W1 & W) = (Ve W) & (V @ W)).

HW 26. Prove the properties (a), (b), (c) for direct sums stated at the end of the lecture on Friday,
November 22.

HW 27. Let V be a vector space over F. Let L denote Span{v ® v/ —v' @ v | v,0' € V} CV V. Let
v1 * vy denote the coset v1 ® vg + L in the quotient space (V @ V) /L. Set S%(V) := (V ®V)/L, the symmetric
square of V.

(i) Show that the same bilinear properties holding in V' ® V hold with respect to the property *
S2(V).

(i) Show that vy * vy = vy * vy in S%(V), for all vy,vy € V.

(iii) Suppose vy,...,v, is a basis for V. Find a basis for S?(V).

(iv) If dim(V) = n, what is dim(S%(V)) ?

(v) Given a vector space U, a bilinear map h : V. x V. — U is symmetric if h(v1,v2) = h(v2,v1) for all
vi,v0 € V. Let f: VXV — S2(V) be the natural map i.e., the usual bilinear map f : VxV — V@V
followed by the quotient map from V @ V — S2(V). Prove that f is a symmetric bilinear map, and
given any vector space U and a symmetric bilinear map ¢g : V x V' — U, there exists a unique linear
transformation T : S2(V) — U such that T'o f = g.

HW 28. Let G be the matrix group of 3 x 3 permutation matrices. A G-invariant subspace U C C3 is
irreducible is it has no proper G-invariant subspaces. Show that C? is the direct sum of two irreducible
G-invariant subspaces.



