
FALL 2024: MATH 790 HOMEWORK

Homework problems from Linear Algebra Done Right will be labelled LADR.

HW 1. Let V be a vector space over the field F . Note that we are not assuming that V is finite dimensional.

(i) Prove the following version of the exchange property. Let {u1, . . . , un} ⊆ V and set U := ⟨u1, . . . , un⟩.
Suppose v1, . . . , vm ∈ U are linearly independent. Prove that m ≤ n.

(ii) Give a detailed prove using Zorn’s lemma to show that any vector space has a basis.
(iii) Assume that F = C. Prove that V is also a vector space over R, and assuming V is finite dimensional

over C, find the dimension of V as a vector space over R in terms of the dimension of V over C.
(iv) Let W ⊆ V be a subspace. Use Zorn’s lemma to prove there exists a subspace U ⊆ V maximal with

respect to the property that W ∩ U = 0.

HW 2. Let V be a vector space over the field F .

(i) Suppose T : V → W is a linear transformation between finite dimensional vectors spaces. Assume
α1, α2 are bases for V and β1, β2 are bases for W . Use the crucial formula from the lecture of August
28 to write a formula relating the matrices [T ]β1

α1
and [T ]β2

α2
.

(ii) Prove that if the dimension of V equals n, with n > 0, then there cannot exist a chain of subspaces
(0) ⊊ W1 · · · ⊊ Wn ⊊ V . Conclude that if U1 ⊆ U2 ⊆ U3 ⊆ · · · is an ascending chain of subspaces of
V , then there exists n0 ≥ 1 such that Us = Un0 , for all s ≥ n0.

(iii) Suppose F is infinite. Prove that V is not the union of finitely many proper subspaces of V .

HW 3. This homework uses the notation from the second day of class, as it appears in the Daily Update
from August 28. Let A be an n× n matrix with coefficients in the field F .

(i) Let T : V → W be a linear transformation and set A = [T ]βα. For v ∈ V let [v]α denote the n × 1

column vector in Fn obtained as follows: If v = a1v1 + · · · + anvn, then [v]α =

a1
...
an

. The vector

[T (v)]β in W is defined similarly. Prove that [T (v)]β = A · [v]α.
(ii) Show that if B is obtained from A by interchanging two rows, then |B| = −|A|.
(iii) Let E be an elementary matrix, i.e., an n × n matrix obtained from In by applying an elementary

row operation. Prove that EA is obtained from A by apply the same elementary row operation to
A.

(iii) Prove that if A is any matrix, then there is a sequence of elementary row operations that put A into
reduced row echelon form.

(iv) Show that if E is an elementary matrix corresponding to an elementary row operation of a given
type, then Et is an elementary matrix corresponding to a row operation of the same type.

HW 4. For problems these you may use any of the properties of the determinant discussed in class.

(i) For an n×n matrix A, verify the Laplace expansion along the kth row: |A| = Σn
j=1(−1)j+kakj |Akj |.

(ii) Let A be an n×n invertible matrix such that every entry is ±1. Prove that |A| is an integer divisible
by 2n−1.

(iii) Suppose that A and B are (2k+1)× (2k+1) matrices over R such that AB = −BA. Prove that A
and B cannot both be invertible.

HW 5. Let V be a vector space of dimension n over the field F .

(i) Prove that the vector spaces L(V, V ) and Mn(F ) are isomorphic.
(ii) Using the Cayley-Hamilton theorem for matrices, prove that χT (T ) = 0, for T ∈ L(V, V ).
(iii) For f(x) ∈ F [x], with s the degree of f(x), prove that |xIs −C(f(x))| = f(x), where C(f(x)) is the

companion matrix of f(x). In other words χC(f(x))(x) = f(x).
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HW 6. In the first two problems below, V is a vector space of dimension n and B := {v1, . . . , vn} ⊆ V is a
basis for V .

1. For v ∈ V , write v = a1v1 + · · ·+ anvn. Define [v]B :=

a1...
an

, a column vector in Fn.

(i) For α, β ∈ F and v, w ∈ V , show that [αv + βw]B = α[v]B + β[w]B .
(ii) For T ∈ L(V, V ) and v ∈ V , show that [T (v)]B = [T ]BB · [v]B .

2. Suppose λ ∈ F and T ∈ L(V, V ). Using the corresponding result for matrices, prove that λ is an eigenvalue
of T if and only if χT (λ) = 0.

3. Prove a uniqueness statement for the division algorithm in F [x], i.e., prove that if f(x), g(x), h(x), r(x), h0(x), r0(x)
are in F [x] and

g(x) = f(x)h(x) + r(x) = f(x)h0(x) + r0(x),

where r(x), r0(x) are either zero or have degree less than the degree of f(x), then h(x) = h0(x) and
r(x) = r0(x).

HW 7. 1. Let W ⊆ R be a plane through the origin and L ⊆ R3 a line through the origin, with L ̸⊆ W .
Prove that R3 = W ⊕ L.

2. Suppose V = W1 + W2, for proper non-zero subspaces W1,W2 ⊆ V . Prove there exists a subspace
U2 ⊆ W2 such that V = W1 ⊕ U2.

3. Suppose D is an n × n diagonal matrix with diagonal entires λ1, . . . , λn. Prove that λ1, . . . , λn are the
only eigenvalues of D.

HW 8. 1. Suppose B′ = {v′1, . . . , v′n} is a basis for V and P = (pij) an n × n matrix over F . Consider
B = {v1, . . . , vn}, where each vi = pi1v

′
1 + · · · + pinv

′
n. Show that B is a basis for V if and only if P is an

invertible matrix.

2. Transcribe the main theorem concerning diagonalizability of linear transformations presented at the end
of the lecture on September 13 to a statement about diagonalizability for matrices, and then use the linear
transformation form of the theorem to prove the matrix form of the theorem.

HW 9. 1. Suppose B is a basis for the vector space V and B = B1 ∪ · · · ∪ Br is a partition of B. Set
Wi := Span(Bi), for each 1 ≤ i ≤ r. Show that V = W1 ⊕ · · ·⊕Wr. Note: V need not be finite dimensional,
though you can assume this initially, to get a feeling for how this works.

2. Let T : Fn → Fn be a linear transformation, suppose E ⊆ Fn is the standard basis, and write A = [T ]EE .
Suppose P is an invertible matrix such that P−1AP = D, where D is a diagonal matrix. Let C1, . . . , Cn be
the columns of P , and set B := {C1, . . . , Cn}. Prove that B is a basis for Fn and [T ]BB = D.

3. Let F be a field and TA : F 2 → F 2 be the linear transformation whose matrix with respect to the standard

basis is A =

(
0 −1
1 0

)
. Determine if TA is diagonalizable over the fields: (a) F = R, (b) F = C, (c) F = Z2,

and (d) F = Z3.

4. Let TB : R2 → R2 be the linear transformation whose matrix with respect to the standard basis is

B =

(
0 −6
1 −5

)
. Show that TB is diagonalizable. Find an invertible 2 × 2 matrix P such that P−1BP has

the eigenvalues of B down its diagonal.

Henceforth, whenever we say that V is an inner product space, we assume that F = C or R.
HW 10. 1. Let V denote the vector space of complex polynomials having degree less than or equal to n.

For f, g ∈ V , set ⟨f(x), g(x)⟩ :=
∫ 1

−1
f(x)g(x) dx. Show that this defines an inner product on V .

2. Suppose V is an inner product space Show:

(i) ||v|| = 0 if and only if v = 0⃗.

(ii) ||λv|| = |λ| · ||v||, for all v ∈ V and λ ∈ F . Here for the complex number λ, |λ| :=
√
a2 + b2, if

λ = a+ bi. Note if λ ∈ R, |λ| is just the absolute value of λ.
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(iii) If 0⃗ ̸= v ∈ V , and λ = 1
||v|| , show that ||λv|| = 1.

3. Suppose V is an inner product space defined over R. Show:
(i) ⟨u+ v, u− v⟩ = ||u||2 − ||v||2, for all u, v ∈ V .
(ii) If u, v ∈ V have the same length, then u+ v is orthogonal to u− v.
(iii) The two diagonals of any rhombus are perpendicular to each other.

HW 11. 1. Let V be the vector space of real polynomials of degree less than or equal to two. Define

⟨f(x), g(x)⟩ :=
∫ 2

0
f(x)g(x). Find an orthonormal basis for V .

2. Let W be a subspace of the finite dimensional inner product space V . Show that V = W ⊕W⊥. Hence
the name orthogonal complement for W⊥. Hint: Start with an orthogonal basis for W and extend it to an
orthogonal basis for V . Thus, every vector v ∈ V can we written uniquely as v = w + w′, with w ∈ W and
w′ ∈ W⊥. The vector w is called the orthogonal projection of v onto W .

HW 12. 1. Let C =

−4 2 −2
2 −7 4
−2 4 −7

. Find an orthogonal matrix Q such that Q−1CQ is diagonal. Now,

Let TC : R3 → R3 be the linear transformation whose matrix with respect to the standard basis of R3 is C.
Find an orthonormal basis for R3 consisting of eigenvectors for T .

2. Find a 2× 2 matrix over R that is diagonalizable, but not orthogonally diagonalizable.

HW 13. Let V be a finite dimensional inner product space over C.

1. For T ∈ L(V, V ), using the definition of T ∗ from class, prove a version of the first spectral theorem over
C for T , using the corresponding result for matrices.

2. For T, S ∈ L(V, V ), use the definition of T ∗ from class to prove the following properties:

(i) (S + T )∗ = S∗ + T ∗.
(ii) (ST )∗ = T ∗S∗.
(iii) λT )∗ = λT ∗.
(iv) (T ∗)∗ = T .
(v) If T is invertible, (T−1)∗ = (T ∗)−1.

HW 14. Give an example of a matrix A ∈ M2(C) that is not self-adjoint, but A is normal, and its entries
are not in R. Then show that, for you particular choice of A, ||Av|| = ||A∗v||, for all v ∈ C2.

HW 15. Consider the matrices

A =


0 1 0 0
−1 0 0 0
0 0 0 2
0 0 −2 0

 ,

and

B =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .

Show that these are normal matrices. Then show that when A acts on R4 by multiplication, there are
four invariant subspaces, whereas when B acts on R4 by multiplication, there are infinitely many invariant
subspaces. The difference here lies in the difference between µA(x) and µB(x). Calculate these polynomials.

HW 16. 1. Let A be an m×n matrix over R or C. Prove that: (a) A∗A and AA∗ have the same eigenvalues,
counted with multiplicity and (b) A∗A and A have the same rank.

2. Find the singular value decomposition for the following matrices: (a)A =

(
i 2i
3i 6i

)
; (b)B =

0 0 0 −5
0 0 0 0
1 1 0 0

.
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HW 17. Let F [x] denote the ring of polynomials with coefficients in the field F .

(i) Let p(x) ∈ F [x] be a non-constant irreducible polynomial. Prove that for any non-constant f(x) in
F [x], the GCD of p(x), f(x) is either p(x) or 1.

(ii) Show that if p(x) is irreducible over F and p(x) divides f(x) · g(x), then p(x) divides f(x) or p(x)
divides g(x). (Hint: Use (i) and Bezout’s Principle.)

(iii) Prove that if p1(x) · · · pr(x) = q1(x) · · · qs(x), and each pi(x), qj(x) is monic and irreducible over F ,
then r = s, and after re-indexing, qi(x) = ·pi(x). In other words, the factorization property for
polynomials in F [x] is in fact a unique factorization property.

HW 18. 1. Consider f(x) = x4 + x3 + x+ 1 and x4 + 2x in Z2[x]. Use the Euclidean algorithm to find the
GCD of f(x) and g(x), then write this GCD as a(x)f(x) + b(x)g(x), for some a(x), b(x) ∈ Z2[x].

2. Consider the matrix

1 1 0
0 1 1
1 0 1

 as an element of M2(R) and T : R3 → R3 given by T (v) = Av. Find a

basis B ⊆ R3 such that the matrix of T with respect to B is block diagonal, with one block a 2×2 companion
matrix and the other block a 1× 1 matrix.

3. Suppose A is a 3 × 3 matrix over R whose minimal polynomial equals x3. Show there is an invertible

matrix P such that P−1AP =

0 0 0
1 0 0
0 1 0

. Hint: What form must µA,v(x) take, for v ∈ R3.

HW 19. 1. Let T : R3 → R3 be the linear transformation whose matrix with respect to the standard basis

is A =

 2 −2 3
1 0 2
−1 2 0

.

(i) For v =

0
0
1

, show that ⟨T, v⟩ = R3.

(ii) For w = (T 2 + I)(v), find µT,w(x) and determine ⟨T,w⟩,

2. Suppose T ∈ L(V, V ) and there are non non-trivial T -invariant subspaces of V . Prove V is a T -cyclic
vector space.

3. Assume T : R3 → R3 and ⟨T, v⟩ = R3, for some v ∈ R3. Let N be the number of T -cyclic subspaces.
Show that N = 2, 4, or 6.

HW 20. 1. Let A ∈ M3(R). Show that µA(x) cannot be an irreducible polynomial of degree two.

2. Let E = {e1, e2, e3} ⊆ R3 be the standard basis and suppose T : R3 → R3 be such that [T ]EE =−1 3 −2
−1 3 −4
−1 1 −2

.

(i) Find µT,ei(x), for each e1, e2, e3.
(ii) Compute µT (x).
(iii) Find a maximal vector for R3 with respect to T .

3. Do the same as in 3, for the matrix


2 0 0 0
2 0 0 −1
−1 1 0 −1
0 0 1 −1

.

HW 21. 1. Use the invariant factor form of the RCF theorem to prove the elementary divisor form of the
RCF theorem, as stated in the lecture of October 21.

2. Prove a matrix version of the elementary divisor form of the RCF theorem.
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HW 22. For the two matrices given in HW 20, find their rational canonical forms and the corresponding
change of basis matrices.

HW 23. 1. For p ≥ 1, find p distinct pth roots of A =

(
0 1
1 0

)
.

2. Find the solution to the system of first order linear differential equations given by the vector equation

X′(t) = A ·X(t), with initial condition X(0) =

(
3
4

)
. Here X(t) =

(
x1(t)
x2(t)

)
.

HW 24. Prove the third isomorphism theorem: Let U,W be subspaces of the vector space V . Prove that
(U +W )/W is isomorphic to U/(U ∩W ). Hint: Find a well-defined surjective linear transformation from
U → (U +W )/W and then apply the First Isomorphism Theorem.

2. Let V and U be vector spaces and W ⊆ V a subspace. Set K := {f ∈ L(V,U) | W ⊆ kerne(f)}. Show
that K is a subspace of L(V,U) and L(V,U)/K ∼= L(V/W,U).

HW 25. 1. Given vector spaces V,W , suppose (P, f) is a tensor product of V and W . Suppose α : P → P1

is an isomorphism of vector spaces. Set f1 := α ◦ f . Show that (P1, f1) is a tensor product of V and W .

2. Let L,M be vector spaces over F . Suppose that T : L → M and S : M → L are linear transformations
sch that ST is the identity on L and TS is the identity on M . Prove that T is an isomorphism with inverse
S.

3. For vector spaces V,W1,W2 over F prove that V ⊗ (W1 ⊕W2) ∼= (V ⊗W1)⊕ (V ⊗W2).

HW 26. Prove the properties (a), (b), (c) for direct sums stated at the end of the lecture on Friday,
November 22.

HW 27. Let V be a vector space over F . Let L denote Span{v ⊗ v′ − v′ ⊗ v | v, v′ ∈ V } ⊆ V ⊗ V . Let
v1 ∗v2 denote the coset v1⊗v2+L in the quotient space (V ⊗V )/L. Set S2(V ) := (V ⊗V )/L, the symmetric
square of V .

(i) Show that the same bilinear properties holding in V ⊗ V hold with respect to the property * in
S2(V ).

(ii) Show that v1 ∗ v2 = v2 ∗ v1 in S2(V ), for all v1, v2 ∈ V .
(iii) Suppose v1, . . . , vn is a basis for V . Find a basis for S2(V ).
(iv) If dim(V ) = n, what is dim(S2(V )) ?
(v) Given a vector space U , a bilinear map h : V × V → U is symmetric if h(v1, v2) = h(v2, v1) for all

v1, v2 ∈ V . Let f̂ : V ×V → S2(V ) be the natural map i.e., the usual bilinear map f : V ×V → V ⊗V

followed by the quotient map from V ⊗ V → S2(V ). Prove that f̂ is a symmetric bilinear map, and
given any vector space U and a symmetric bilinear map g : V × V → U , there exists a unique linear

transformation T : S2(V ) → U such that T ◦ f̂ = g.

HW 28. Let G be the matrix group of 3 × 3 permutation matrices. A G-invariant subspace U ⊆ C3 is
irreducible is it has no proper G-invariant subspaces. Show that C3 is the direct sum of two irreducible
G-invariant subspaces.
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